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Abstract 

These lectures review some basic results of detonation theory and 
are specialized to serve as an introduction to the theory of Detona- 
tion Shock Dynamics (DSD). The theory of DSD is a time-dependent, 
multi-dimensional theory for the propagation of near-Chapman- Jouguet 
(CJ) detonations. This theory is especially relevant to applications of 
detonation propagation in condensed explosives and the basic dynam- 
ics in freely propagating gaseous explosives as well. The theory that 
we present is based on rigorous mathematical arguments and rational 
approximations for an assumed model of the explosive material. The 
material is described by the compressible, reactive Euler equations 
for a given equation of state and kinetic rate law for the release of 
exothermic, chemical energy.   This theory is the basis for the engi- 
neering "Method of Detonation Shock Dynamics", that is now being 
used in the design of explosive systems.  Lectures on the Method of 
Detonation Shock Dynamics are being planned as a sequel. This first 
set of lectures were given in the summer of 1992 at Eglin Air Force 
Base. 
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1    Outline of the Lectures 

The outline of theses lectures is as follows: 

• A brief description of Detonation Shock Dynamics 

• The basic equations 

- The compressible, reacting Euler equations 

- The Rankine-Hugoniot (RH) relations in shock normal coordi- 
nates 

- Intrinsic shock dynamics of the RH relations represented in Carte- 
sian coordinates 

• Review of steady, ID, Zeldovich, Neumann, Doering (ZND) theory 

• Shock attached coordinates 

- General form of the governing equations 

• The detonation shock speed (Dn) - curvature (/c) relationship 

- Derivation of the "master" equation on a central streamline nor- 
mal to the shock surface 

- Derivation of the Dn — K relationship under the assumptions of 
small shock curvature, (K « 1), and slow time variations (d/dt « 

1) 

In the sequel to these lectures we plan to add the following topics: 

• Remarks on conditions near interfaces and suitable boundary condi- 
tions 

• Properties and solution of the Dn-K relations. The "Method of DSD" 

- Basic dynamics of a DSD wave 

- Comparison with numerical experiment 

- Comparison with physical experiment 



• Research issues 

- Extension of the theory at interfaces and for wave - wave interac- 
tions 

- Hydrodynamic stability 

- General equation of state 

• Constraint of the rate equation by matching with the Dn - K 

relation 

• Imbedding of DSD waves in "fast - time" dynamics 

2    Introduction: A brief description of Deto- 
nation Shock Dynamics 

Detonation Shock Dynamics (or DSD) is the name given to a body of multi- 
dimensional theory that describes the dynamics of "near- Chapman-Jouguet" 
detonations and is named after Whitham's theory of "Geometrical Shock 
Dynamics" because of the similarity of the mathematical structure of the 

theories. 
The basic result of DSD theory is that under suitable conditions, the 

detonation shock in the explosive propagates according to the simple formula 

Dn = DCj-a{K), (1) 

where Dn is the normal velocity of the shock surface, DCj is the ID, steady, 
Chapman-Jouguet velocity for the explosive, and a(n) is a function of cur- 
vature K, that is determined by the material properties of the explosive. A 
sketch of a typical Dn - K relation is shown in figure 1. 

The curvature used in this formula is the local shock curvature at given 
point on the shock, with a corresponding attached normal. The outward 
normal direction is denned to be positive when it is pointing in the direction 
of the unreacted explosive. Therefore when the curvature is positive, K > 0 
the shock shape is convex and the detonation is expanding and its surface 
area is increasing. Negative curvature, K < 0, corresponds to a converging 
detonation with a concave shape.   Figure 2 shows these cases for typical 
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Figure 1: The Dn — K relation for a typical condensed phase explosive after 
Bdzil et. al.'s calibration of PBX 9502, [1] 

detonation shocks. The detonation shock samples the curvature of the Dn—n, 
relation and representative points on the detonation shock are indicated at 
time t = 0 (say) by a broken curve. The solid line shows the advancement of 
the shock at time t + At. 

2.1    Surface evolution defined by the Dn — K relation 

The. Dn — K relation is a surface evolution equation for the detonation shock 
surface. Once a coordinate system is chosen, the Dn — K relation can be 
shown to be a nonlinear, parabolic partial differential equation. A simple 
but low resolution solution for the motion of the surface can be obtained 
graphically. One would discretize the surface, marking many points, at equal 
arclength (say) on the shock at time t, draw the local normals to the surface, 
measure the sum of the principle radius of curvatures , K = («i + K2) at each 
point on the shock surface. Then one would look up the appropriate value of 
Dn for the measured curvature K,-, and then mark a new point on the normal 
at a distance 

An,- = Dn(Ki)At. (2) 

The advanced surface then is approximated as that one that passes through 
all of the new points advanced An,- along their respective shock normals. This 
simple algorithm is equivalent to a discretized, first-order accurate numerical 



Diverging Geometry 

A 

t= At 

t = 0 

Converging Geometry 

t=At 

t = 0 

Figure 2: Figure 2a. shows a diverging portion of a near-CJ detonation shock. 
Figure 2b. shows a converging portion of a near-CJ detonation shock. The 
values of the curvature at the numbered points are indicated on the Dn — K 

curve shown in figure 1. 

solution for the surface evolution equation, which is a second order partial 
differential equation in space and first order in time. Figure 2 indicates the 
graphical surface construction for a converging and diverging cases. The 
broken curve indicates the shock surface at the current time, t, and the solid 
curve indicates the shock surface at a previous time t + At. 

Since the Dn - K relationship is usually monotonically decreasing with 
increasing curvature, regions of the detonation shock that are diverging are 
slowed and regions of the shock that are converging are sped up, relative to 

DCJ. 

2.2    Importance of the Dn — K relationship for multi- 
dimensional theory and application 

Here we mention a few important points about the properties of the Dn — K, 

relationship and their implications for basic detonation theory and explosives 
engineering. 



• The Dn — K curve, combined with an analysis of the explosive con- 
finement provided by the walls of the stick, predicts the well-known 
diameter effect in rate stick geometry. (The diameter effect reflects the 
fact that the steady axial velocity of curved detonation is a function 
that decreases as the stick radius decreases.) 

• DSD theory shows that the Dn — K, relationship is an intrinsic (i.e. 
material) property of the explosive. Therefore the Dn — K curve can 
be measured in one geometry and then be used to make predictions in 
other geometries. 

• The Dn — K relationship is a correction of the Huygens construction 
rule that has traditionally been used to describe ideal detonation prop- 
agation. In the Huygens construction, the detonation normal velocity 
is constant and equal to its CJ value. The Dn — K relationship is found 
theoretically to depend on reaction zone chemistry and describes the 
modification of the normal detonation shock velocity from CJ. For ex- 
ample, the longer the ID reaction zone is, the more important the 
relative reaction zone effect is on the dynamics of that explosive. This 
is an important consideration for insensitive high explosives that typ- 
ically have long reaction zones compared to sensitive high explosives 
with short reaction zones. 

• The shock surface evolution can be carried out with a small computa- 
tional effort, when it is applicable, relative to that of direct numerical 
simulation. Prediction of the motion of the detonation shock surface by 
DSD, requires the solution of a parabolic PDE. The same simulation 
carried out using a Direct Numerical Simulation (DNS) of the Euler 
equations, requires a solution of a minimum of five (in 2D), or six (in 
3D) coupled, hyperbolic equations. A more important consideration is 
the that the size of the simulation done for DNS is severely restricted 
because of accuracy limitations. DSD calculations are not limited in 
the same way and can be used on much larger, device-sized regions, 
without loss of accuracy, within the assumptions of the theory. 

• The Dn — K relationship is sensitive to the form of the rate law (chem- 
istry) and therefore may be an excellent experimental indicator and a 
way to measure the average reaction zone chemistry. 
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2.3    A Brief, incomplete history of the Dn- K relation 

Here we outline some of the most important contributions to the development 
of the theory. This list is incomplete but indicates the main theoretical 
contributions. 

The history of the Dn - K relation starts with Eyring et. al. (1949), [2] 
who suggested that the curvature of the detonation wave might have a sig- 
nificant effect on its propagation. The next important contribution was that 
of Wood and Kirkwood (1954), [3] who attempted to derive the relationship 
on a central streamtube. Their work was based on ad hoc assumptions, how- 
ever they outlined the central analysis.   Fickett and Davis generalized the 
discussion of the problem posed by Wood and Kirkwood [14] in a section of 
their book entitled "Slightly Divergent Flow" and used the relative velocity 
squared and the reaction progress variable, phase-plane.   Bdzil (1981), [4] 
made a critical contribution that is the origin of the asymptotic theory of 
DSD. In his paper, Bdzil derived the diameter effect that relates the axial 
speed of the detonation to the diameter of the rate. To do this, he used formal 
asymptotic arguments based on the small reaction zone thickness compared 
against the diameter of the stick and established an ordinary differential 
equation for the steady shock shape across the stick.  The steady Dn — K 

relationship is implicit in Bdzil's paper. The first asymptotic derivation of 
the 3D, unsteady Dn- K relation, was derived (and presented essentially in 
the form discussed in these notes) by Stewart and Bdzil (1988), [5]. 

Other contributions to the asymptotic theory, experimental and numer- 
ical implementation of DSD, include those of Lambourn, [6], Bukiet and 
Menikoff, [7], and Klein and Stewart, [8]. There have been other contribu- 
tions that use ad hoc approximations that we don't mention here. Bdzil has 
pioneered the practical application of DSD for engineering applications, [9] 
and Lambourn and Swift have worked on the engineering applications in a 
similar effort in England [10]. A list of related references is found in the 
bibliography. 

3    Governing Equations and the Basic Model 

The basic mathematical model of explosive materials is the compressible Eu- 
ler equations with reaction.  A state variable theory is assumed, where the 



explosive is described by its thermomechanical properties for the bulk ma- 
terial. The basic mechanical variables are the velocity, u, the density p and 
the thermodynamics pressure p. Chemistry is modeled directly in the equa- 
tion of state by introducing additional thermodynamic degree(s) of freedom 
that measures the reaction progress of a net, forward, exothermic chemical 
reaction. One global progress variable, A, can be used, but a reaction scheme 
can also be considered where A is replaced by a vector A,-. Specification of 
an equation of state of the form e(p, p, A) equation of state, rate law for A 
(or rate laws for A,), is assumed to be given at the outset to describe the 
explosive. 

3.1    Material description 

3.1.1    Equation of state 

In these notes, we will illustrate the DSD theory mainly for the polytropic 
equation of state, 

P e = r - QA. (3) 
P7-1 

Here 7 is the polytropic exponent and Q is the heat of combustion. This 
equation of state is the appropriate one for a description of a gaseous explo- 
sive. The polytropic equation of state is often used to describe the expansion 
of explosive products by allowing 7 to have an artificially higher value than 
that usually allowed for gases, i.e. 7 ~ 2.5 - 3. This EOS also has the ad- 
vantage that a relatively large body of theoretical results exist for it. These 
include resolved numerical and parametric studies of the DSD theory and 
hydrodynamic stability, [11], [12]. DSD theory, however is not restricted to 
ideal EOS and nonideal explosive equations of state can be used. 

For example, one might consider a typical model of an explosive that in- 
terpolates between an equation of state that matches the near-shock EOS, 
when A ~ 0 and matches to the CJ products EOS when A ~ 1 (near complete 
reaction). The near-shock EOS, typically of the Mie-Gruniesen form, is con- 
structed from a Taylor series expansion in the vicinity of an experimentally 
determined shock Hugoniot for the unreacted explosive. This form is then 
guaranteed to at least fit the unreacted explosive's response to a shock. Let 
the near-shock EOS be e = e#£(p, p). 
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An example of the near-complete reaction EOS is the JWL-EOS, which is 
also of Mie-Gruniesen form, constructed from a Taylor series expansion that 
uses the CJ isentrope as a reference curve, [14]. Suppose we refer to that 
EOS as e = CPR(P,P). Using the reaction progress variable to provide an 
interpolation between the two behaviors, the composite EOS can be written 
in a form that resembles that for mixtures of gases, for example 

e = (l-A)eH£.(p,p) + AepÄ(p,/>). (4) 

3.1.2    Burn rate law 

The burn rate law, is an evolution equation for the material rate of change 
of the progress variable A within the explosive material particle. The form 
of this rate law, derived from considerations of the microstructure, has been 
an uncertain element in the modeling of condensed explosives. One clear 
constraint is that the reaction should stop when A = 1, which suggests that 
the reaction rate should be a function of, and vanishes with 1-A. The rate law 
is usually constrained by comparison with macroscopic physical experiment. 
A typical form is 

j± = r(p,p,\) = k(p,p)(l-\Y, (5) 

where DX/Dt is the material derivative of A.  Common forms for the rate 
premultiplier fc(p, p) include: 

Jb(p, p)   =   fc, a constant, (6) 

k(p,p)   =   k exp(-E/{p/p)), an Arrhenius form, (7) 

k(p, p)   =   k exp(A + Bp + Cp2), a Forest Fire form. (8) 

In the above, k, E, A, B and C are constants. 
In summary, the explosive's material properties are described entirely by 

the e(p,p, A) equation of state and the functional form for the rate law, i.e., 
r(p,p,A). 

11 



3.2    The conservation laws 

The equations of motion are the Euler equations for a compressible, reacting 
material. The material or Lagrangian derivative is represented as 

*'* + '•* (9) 

The statements of conservation of mass, momentum, energy and statement 
and the statement that the material time rate of change of the reaction 
progress variable is equal to the local reaction rate are given by 

^ + />V.u = 0, (10) 

^ + VP = 0, (11) 

De       Dv     n /1oX 
 Yv— = 0, (12) 
Dt    vDt       ' ^   ' 

where v = \jp and 

^ = r(p,,,A). (13) 

These equations hold everywhere in smooth part of the flow, i.e. with smooth 
variations of the field variables and their first spatial derivatives. However, 
the flow field is generally comprised of smooth variations which are inter- 
sected by gasdynamic discontinuities such as shocks, contact discontinuities 
and rarefaction fans. The detonation wave, in particular has a lead shock, 
followed by a smoothly varying reaction zone. 

3.3    Rankine-Hugoniot relations 

The ZND structure of a detonation wave has a shock wave preceding a reac- 
tion zone. A sketch is shown of the pressure and progress variable is shown 
in figure 3. The lead shock wave is a moving boundary whose motion and 
location is coupled to the smooth variations behind it. If the upstream, unre- 
acted quiescent state is known, and the motion of the shock is approximated, 
then in the solution scheme the shock acts as a boundary, and the values of 
the variables immediately behind the shock are boundary values. 

12 



shock              M 

T^   \                   pressure 
D                         \        / 

unreacted material 
/ \ - 0       reaction progress 

x - distance from shock 

Figure 3: A sketch of the structure of a ZND detonation, which is shock wave 
followed by a reaction zone 

3.3.1    Shock normal coordinates 

The dynamics of the shock and the mathematical representation of the sur- 
face, in different coordinates systems, play a central role in the theory of DSD. 
The starting point of the shock surface dynamics is the Rankine-Hugoniot 
shock relations which conserve mass, momentum and energy of material that 
flows through the shock surface. 

The shock is assumed to be a smooth surface of discontinuity, with an 
outWard normal to the surface, h in the direction of the unreacted material, 
and with two independent vectors, t\,t-i, in the surface of the shock, parallel 
to the tangent plane defined by the normal. A convenient choice defines these 
unit vectors, U, in the directions of the principle radius of curvature of the 
surface. Figure 4 shows a 2D shock relative to laboratory coordinates. We 
discuss intrinsic coordinates at length in section 4. 

We use a (0) subscript to denote the state in the unreacted material and 
use a (s) in the shocked material. Suppose that the shock surface velocity is 
given at each point by the vector D. Let un = ü • n, uti = u • <„ Dn = D • n, 
define the normal and tangential particle velocities and the normal shock 
velocity. The normal mass flux m is given by ra = p(u — D) • h. The 
momentum flux normal and tangential to the shock are m(u — D) • h and 
m(u—D)-i respectively. Then the standard form of the normal shock relation 
are given by, 

13 



z    A     unreactedHE 
f      n ■ normal to the shock 

shock                   / 

^ L^^              $   tangent to the shock 

>» 

/                        reacted products 

/ 
/ 

/ 
/ 

/ 
/ 

X 

Figure 4: The geometry for a 2D detonation shock moving in a fixed labora- 
tory coordinate system 

[p{u- D)-h}o = [p(H-D)-h]a = m,                        (14) 

\p + m(ü-D) -n]0 = \p + m(u-D) • n]„                     (15) 

[m(D - u), t\Q = [m(D - u) • *]„                             (16) 

[e + p//> + l/2(un - Dn)
2]0 = [e + p/p + l/2(un - Dn)2]„         (17) 

A,=0.                                                (18) 

Another equivalent (and convenient) form for the shock relations is • 

[/»(«»-0B)]o = [/>("»-A,)].,                              (19) , 

p, - po = m2(i>o - w,),                                      (20) 
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(«»«)• = ("tjo, for i = 1, 2 , (21) 

ea - e0 = l/2(p, + po)(fo - us), (22) 

As = 0. (23) 

For a given shock equation of state, e(p,p,0) and for a given Dn, one 
can solve explicitly for the shock state, p3{po,Po, A»), etc. The solution for 
the shock state pa,(un)„ (uti)„p„ A, in terms of D„, serves as the boundary 
conditions for the solution of the Euler equations. However, the velocity of 
the shock, Dn is ultimately determined by compatibility with the flow behind 
the shock and thus is part of the complete solution. 

3.3.2    Exercise: Rankine Hugoniot algebra for the ideal EOS 

For the ideal equation of state with reaction, 

1 
e = -L-£ - QX, (24)- 

7-lp 

define Un = un - Dn (the relative normal velocity) and take u0 = 0 so 
that m = -poD, from the Rankine - Hugoniot relations, eliminate p and U 
in favor of p, and obtain a quadratic equation for ps show that ps has the 
solution 

P» = 
7 + 1 

mr 
Po + — 

po 
-Po 

7 + 1 7 + 

l_rrf\2 _ 7_ll 
+ 1 Po )       7+1 

2m2QA 

1/2 

. (25) 

The inert shock solution is found by setting QX = 0. Show that when 
QX = 0 the two solutions are the undisturbed state, with p,/po = 1 (the 
minus branch) and the shock state (the plus branch) with 

27 £i = l + ^-(M0
2-l), 

Dn 7+1 Po 
(26) 

where 

15 



shock state defined by the intersection 

Rayleigh line (mass and momentum) 

Hugoniot (energy) 

Figure 5: The Hugoniot and the Rankine line plotted in the p—v plane. The 
intersection defines the shock state. 

D2 

Ml = -f-, where, eg = fpo/po- 
Co 

(27) 

is the upstream Mach number of the shock. 
Once the shock pressure pa is determined, then specific volume v, and the 
relative normal particle velocity, Us are calculated by successive evaluations, 

V3 = VQ - 
Ps-PO 

m' 

</, = -. 

(28) 

(29) 

The solution to the shock relations can also be obtained by graphical 
solution in the p — v plane. One plots the Rayleigh line, (20) (a linear 
relationship between pressure and specific volume) and the Hugoniot curve, 
(22). The intersection of Rayleigh line and the Hugoniot, for p3/p0 > 1 
defines the solution. See figure 5. 

3.3.3    Exercise: Strong shock approximation 

The strong shock approximation is the limit when the ratio of the shock 
pressure to the ambient pressure is very large, i.e. 
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^ » 1. (30) 
Po 

Show that in this limit the shock relations for the ideal equation of state 
reduce to, 

Ps = Po^, (31) 

Ps = ^-PoDl      . (32) 
7 + 1 

Un = un - Dn = -Dn^\. (33) 
7 + 1 

3.4    Cartesian coordinates 

Consider a lab-frame Cartesian coordinate system, (similar to that shown in 
figure 4), where z is in the main (axial) direction of propagation of the deto- 
nation shock and the x and y axes are in the transverse directions. Suppose 
the shock surface is described by the surface equation 

xl> = z-Dt-z3(x,y,t) = 0, (34) 

where D is a constant and describes the nominally steady 1-D detonation 
velocity (D = DCj , say). Then the function za(x, y, t) describes the deviation 
of the shock locus from the plane, z = Dt. These coordinates are useful 
for describing detonation in a geometry typical of a rate stick, where the 
detonation travels down the axis of the stick. 

3.4.1    Exercise: Surface Kinematics 

Given the moving surface as described above, show that the normal n is given 
by 

dz, > dz 
Vip ~~a2**~ ~d$ey + e* 

|Vt/>| i+fe)2+(ty 
1/2' (35) 

and that the normal velocity of the shock surface can be written as 
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D»ft = -^7rtft- (36) 
|VV»| ot 

or 

D + %- (   dz,^       dz. \ ,. 
Dnh = -—TT-ZL.—r-2    —T~er - -r-&y + ez   . (37) 

l + (fc)   + (*)    V    & * ^ 
Next, apply these specific representations to the vector form of the Rankine- 

Hugoniot relations, with u = uxex + uyey + u2ez. In particular you will need 
to use the mass conservation condition (which involves un) and the tangential 
momentum conservation condition (which involve the components of uu) to 
obtain conditions for the jumps of uz, ux and uy. 

Show that in the strong shock limit, for the polytropic equation of state, 
in Cartesian coordinates, the Rankine-Hugoniot conditions can he solved for 
the shock state (s), in terms of the function za(x,y,t) that describes the 
motion of the shock as 

7+1 
p3 = po r, 7-1 

(38) 

t   \ 2    (ds'\ D + ^ (39) 

2     (dz.\ D + fy m 

2       ( D + ^ 

*"l*[T^#fii#?]t (42) 

A, = 0. (43) 
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3.5    Dynamics of the shock interface for small shock 
slope 

From the shock relations, we can make observations about the dynamics of 
the shock when the shock slope is small relative to the plane of the axial 
direction. To make rational approximations of the dynamics, we need to 
select the axial, reference normal that defines the reference tangent plane 
and then discuss the motion of the shock relative to it. 

The smallness of the shock slope relative to the reference plane is given 
by the assumption that 

~= 0(e), where e « 1. (44) 
ox 

The distortion of the shock from planar shows up in the appearance of terms, 
like dzs/dx in the shock jump relations. We see that shape change effects 
the shock state by an ordered amount. In particular, the shock pressure is 
changed by 0(e2) from its steady ID value by shape effect terms. The same 
is true for the particle velocity in the axial direction,!^. However, the leading 
order correction to the transverse velocity ux is 0(e). 

The shock relations of the last section also show that unsteady effects of 
motion of the shock surface are of the same order of magnitude as the shock 
shape effects if the dynamics of the shock motion are sufficiently slow. The 
explicit assumption that shock shape and shock motion effects are compara- 
ble in their influence on the shock state is written as 

7>f~0^ (45) 

With the assumption of the scalings given by equations (44) and (45), 
the expansions for the the Rankine-Hugoniot shock states for uz, ux and ps 

take the approximate form, 

(«,). ~ -47D7T' (47) 
7 + 1     ox 
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-7>°H£-(t))- 
The expression for (uy)3 is similar to (47) and pa and A, are unchanged from 
(42) and (43), 

The conclusions of this section can be summarized as follows. Small 
spatial defects on the shock are consistent with slowly evolving dynamics. 
Such a theory of approximation, leads to a quasi- ID, quasi-steady description 
of the detonation structure. Small shock slope corrections, dzjdx ~ 0(e) 
and dynamic shape changes (dza/dt)/D ~ 0(e2) lead to 

• 0(e2) changes in the shock pressure 

• 0(e2) changes in the normal particle velocity along axial direction , (e.g 

• 0(e) changes in the transverse particle velocities (e.g. ux ) 

For this special equation of state in the strong shock limit, there are no den- 
sity changes at the shock, however the density expansion follows the velocity 
expansion in the normal direction and the correction to the density at the 
shock is 0(e2). The ordering scheme directly available from the shock re- 
lations suggests a specific set of scaling relations for the construction of an 
asymptotic theory. We use these scalings later when we derive the master 
equation in section 5. 

4    Review of ID, ZND Detonation Theory 

The ZND theory of detonation structure assumes that the detonation is a 
shock wave, with a reaction zone that follows behind the shock and provides 
the energy that supports the detonation. From the governing equations, it is 
possible to find a supersonic, steady traveling wave that fits this description. 
The analysis of the structure of the steady ZND is the first step in a more 
complete, multi-dimensional theory. 

To obtain the equations that describe the smoothly varying part of the 
detonation structure, i.e.  the reaction zone, one assumes that the wave is 
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traveling in the z-direction (say) with a fixed speed D. The particle velocities 
in the transverse direction are assumed to be zero and only variations in z 
are allowed. The wave is assumed to be steady in a traveling wave coordinate 
defined by n = z — Dt. 

4.1    Exercise: Steady wave analysis 

Make the following assumptions: 

pt pi p> 

and let U = uz(n) — D. Substitute these forms into the governing equations 
and show that the following ODE's result 

C4U„^ = 0, (50) 
an        an 

puf + ¥ = », (51) 
an     an 

ac       dv , /»^\ 
— + p-r = 0, with v = l/p, (52) 
an       an 

U^- = r, (53) 
an 

which can be written in conservative form as 

UpU) = 0, (54) 
dn 

dn 
±(P + PU2) = 0, (55) 

jL(e + p/p+l/2U2) = 0, (56) 
an 

—(A) = -. (57) 
dnK '     U 

(The last equation of course, is not a conservation statement, but would be 
if there were no reaction.) 
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Integration of three of the last four equations obtains 

PU = CX, (58) 

p + pU2 = C2, (59) 

e(p,p,A) + £ + W2 = C3, (60) 
P     2 

which are valid for all n within the reaction zone. In particular these equa- 
tions must hold at the shock, n = 0. Hence by evaluating these relations at 
the shock, and in turn, by using the shock relations themselves, one finds (in 
the strong shock approximation), 

Cl = p,U. = -p0D, (61) 

C2=Pa + p3Ul = PoD2, (62) 

C3 = e(p„p„0) + \/2U2+pJps = 1/2D2. (63) 

The task is to solve these relations for p, p and U as functions of A and 
D, which in turn hold throughout the reaction zone. This is algebraically 
equivalent to solving the Rankine- Hugoniot shock relations, except that A 
appears as a parameter and it takes on the values , 0 < A < 1 as it describes 
partial reaction. 

Once again one can solve this problem graphically in the p, u-plane, (v = 
1/p) i.e. by finding the intersection of the Rayleigh line and the partial- 
reacted Hugoniot. As before the Rayleigh line is given by 

R:,= *(!-£), (64) 

and the Hugoniot is given by 

H: e(p,v,\) + pv+l-(v/vQ)2D2 =l-D2, (65) 

which for the ideal EOS becomes 
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H:^-po-QX+l-(v/v0)
2D2=l-D\ (66) 

*y — 1 L L 

The negative of the slope of the Rayleigh line is proportional to the square 
of the detonation speed, D2. 

If one plots the Hugoniot in the p, v plane for different values of A, the 
following points hold for most standard explosive equations of state. 

• For partial to complete exothermic reaction, 0 < A < 1, the Hugoniot is 
displaced upwards, away from the origin, from the shock Hugoniot(H: 
evaluated with A = 0.) 

• The intersection of a Rayleigh line and the complete reaction Hugoniot, 
(H: evaluated with A = 1), generally defines two solutions on the shock 
branch. The high pressure solution is called the Strong end state, the 
lower pressure solution is called the Weak end state. 

• At a sufficiently small value of the detonation speed, or D2, the Rayleigh 
line and the Hugoniot are tangent and the two values for the end states 
merge. There are no solutions for values of D below this critical value. 
The minimum detonation speed is called the Chapman-Jouguet deto- 
nation velocity, with D = DCJ. 

Figure 6. shows a sketch of the partial-reaction Hugoniots, Weak and 
Strong and CJ end states in the p,u-plane for different detonation speeds. 
Note that since the Rayleigh line is derived simply from the conditions of 
mass and momentum conservation throughout the detonation structure, it 
holds for each value of A. The detonation states must lie on the Rayleigh 
line. 

For a given value of D, such that the Rayleigh intersects the complete re- 
action Hugoniot, the detonation structure can be described as follows. There 
are two possible structures. The Weak structure has no shock and starts 
from the initial state, point 0 in figure 6, and goes up in pressure along the 
Rayleigh line to the Weak state. Although this structure is admissible from 
the point of view of being a valid solution to the governing equations, the 
standard argument used to rule it out is that there is no precursor ignition 
mechanism available to ignite the reaction zone. 
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D> D 

X = 0 

Figure 6: The p, u-plane showing partial reaction Hugoniot and the Weak, 
Strong and CJ state admitted by the R-H algebra. Rayleigh lines are shown 
as broken. 

The Strong structure is called the ZND solution, and starts out with an 
inert shock. Thus in the p, v plane, the state.jumps from point 0, to the inert 
shock point at point N, at the intersection of the inert Hugoniot (A = 0) and 
the Rayleigh line. For realistic equations of state, the shock pressure is the 
highest pressure within the detonation structure. The shock also provides 
the mechanism for the ignition of the reaction. The pressure then drops, 
from its highest value at state N, to its termination value at the Strong state 
at point S as A increases from 0 to 1. 

For a simple equation of state, these calculations can be done analytically, 
however for a more complex EOS the solution to the algebra must be carried 
out numerically. Recall that the solution for the end state pressure was in 
fact given,in an earlier section, for the ideal EOS by equation (25). Notice 
that the Strong and Weak state coalesce to the CJ state when the argument 
of the square root vanishes. 

4.2    Exercise: Calculation of DCJ for the ideal EOS 

Show that the condition that determines the CJ detonation velocity is 
easily obtained in the strong shock limit as 
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D2
CJ = 2tf-\)Q. (67) 

4.3    ZND Spatial Structure 

To find the spatial structure of the detonation, one still has to integrate the 
rate equation. We use a * subscript to denote the solution of the partial 
reaction Rankine-Hugoniot algebra for functions of A 

p = p,(A), U = tf.(A), P = *(A). (68) 

Then the rate equation is written as 

d\ = r(p.(A),?.(A),A) 

dn U*(\) 

which in turn can be integrated to obtain the spatial distribution n = n(A) 
as 

U.{J) 
Jo r(p.(A),p.(A),A) 

(70) 

4.3.1    Exercise:  Calculation of the ZND reaction zone structure 
for an ideal EOS 

Show that for the ideal equation of state that the CJ, ZND solution structure 
can be described by the relations 

P* = Po 7i (71) 

U. = -DCJ
1
^, (72) 

7+1 

where I is defined by 

£ = VT^X, (74) 
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and that the distribution of the reactant is found from the integral of the 
rate equation 

»r Um{i)- -2ld£. (75) 
r(p.(l),p.(i),l-P) 

Carry out the integration for the case when the rate law is given by sim- 
ple depletion alone and the premultiplier of the rate constant has no state 
dependence. Then r is of the form 

r = k(l — A)", with, k, v = constant. (76) 

5    Intrinsic Geometry and Shock-Attached Co- 
ordinates 

We next discuss the use of intrinsic, shock-attached coordinates, in order 
to describe curved, time-evolving detonation waves. Ultimately we must 
represent the wave system in a fixed laboratory frame which we take as 
(x,y,z). The intrinsic coordinate frame we discuss here has the following 
properties: 

• The curvilinear coordinates are normal to the shock and parallel to the 
shock surface. 

• One of the coordinate surfaces is coincident with the shock surface. 

• The reaction zone follows immediately behind the shock and is ac- 
counted for in these calculations. 

• The coordinates reflect the growth (or shrinkage) of the shock area (or 
the arc-length) in an expanding (converging) geometry. 

• The coordinates are more complicated in their complete form, than 
Cartesian coordinates (say). This can be a disadvantage. 

There are two types of intrinsic coordinates that have been developed 
extensively for the description of Detonation Shock Dynamics; a 2D version 
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reference normal 

<p -angle relative to a fixed 
normal 

A 
n 

^ -arclength along the shock 

Figure 7: A sketch of arc-length angle coordinates used in 2D for DSD 

that uses arc length along the shock and the angle of the shock normal rela- 
tive to a fixed direction, and a 3D version that uses the orthogonal coordinate 
net defined by surfaces parallel to the shock surface and the lines of prin- 
ciple .curvature defined in the shock surface itself. The first coordinates are 
described completely in a recent report by Bdzil and Fickett [9]. The sec- 
ond will be described in these notes. The presentation will be specialized, in 
places to 2D, to shorten the presentation. The additions required for 3D are 
straightforward. A representative sketch of the coordinate systems is shown 
in figures 7 and 8 representative of the 2D and 3D coordinate systems used 
in the theory. 

5.1    Bertrand coordinates 

The coordinates that we pick are known as Bertrand coordinates. The start- 
ing point is a shock surface that can be represented quite generally in terms 
of laboratory-fixed coordinates (x,y,z) as 

0(x,y,z;t) = O. (77) 

This equation constrains the lab-coordinate position vectors in the surface 
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reference normal 

n - distance to parallel surfaces 
to the shock 

arclength measured in the 
shock along the directions 
of the principle radii of 
curvature 

Figure 8: A sketch of the orthogonal net comprised of surfaces parallel to 
the shock and the surfaces aligned with the directions of principle normal 
curvatures in the shock surface, used for 3D, DSD theory 

to 

x = xa. (78) 

The normal to the surface can always be calculated by the formula (the sign 
is chosen to be in the direction of the unreacted explosive) 

Vt/> 
n = —3- 

|V0| 
(79) 

The shock surface can be represented in terms of any valid surface pa- 
rameterization that we choose, and we suppose that the shock surface can 
be represented by x = xs(£i,6,*)- The intrinsic coordinates are related to 
the laboratory coordinates by the change of variable given by 

x- = xa((1,(2,t) + nn(Zu&t), (80) 

where the variables n,£i,£2 are respectively the distance measured in the 
direction of the normal to the shock wave, and the arclength measured in the 
directions denned by the principle normal curvatures at the shock surface. 
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If we travel in the shock surface in the direction of £1 or £2, we define the 
unit vectors of the local basis of this coordinate system in the shock surface 
(which are the tangent vectors to the coordinate directions), namely 

We restrict the remaining development to 2D to simplify the presentation. 

5.2    Arc - length angle coordinates 

Let <j> measure an angle of the shock-attached normal to a fixed direction, 
here aligned in the z-direction (say). In the most general case, the reference 
direction can be a space curve with arbitrary orientation. We will refer 
to the reference space curve as the edge. The arclength in the surface is 
measured relative to the intersection of the shock surface with the reference 
curve, hence this intersection is the instantaneous origin for the intrinsic 
coordinate system. This definition of the origin allows for a unique mapping 
of the coordinates of the intrinsic coordinates to laboratory coordinates. In 
particular n = 0 always defines the shock surface, and £ — constant are space- 
time trajectories that measure constant arclength on the shock, relative to 
the edge. 

A't each point on the shock, the angle <j> is defined so that the function 
<j>(£,t) describes the orientation of the normals of the 2D shock. The normal 
and tangent unit vectors are defined in terms of the lab-coordinate basis 
vectors ex, ez in the x and z-directions by 

n = sin(<f>)ex + cos(<f>)ez, i = cos(<j>)ex — sin(<f>)ez. (82) 

The Frenet formulas applied to this coordinate system relate the derivatives 
of the unit vectors along the coordinate directions and reflect the fact that 
our coordinate system is locally orthogonal and is aligned along the lines of 
principle normal curvature. These formulas in 2D are 

oi .   dh       : ,Mv 

of, o£ 
Notice that in 2D, the derivative of the angle <f>, with respect <o the arclength 
£ defines the curvature n 
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«-£?• (84) 

As an exercise the reader can check that according to the above formulas the 
basis of this intrinsic coordinate system is locally orthogonal, (i.e. the dot 
product of the normal and tangent vectors is zero). 

The relation between the laboratory coordinate x and the arclength, angle 
coordinates is as follows. Since positions on the shock are described by 

dx = id£, (85) 

then it follows from the formula for i that 

dx = cos(<f>)d£, dz = -sin(<t>)dt, (86) 

and integration of these formulas then obtains 

x = x.(t) + £ coa{*& t))dl, z = ze(t) - £ sin(i(t, t))d{.       (87) 

The coordinates of the edge, xe(t),ze(t), are introduced for the purpose of 
measuring the arclength from a unique origin in the surface at each instant 
of time. These coordinates are found by locating the intersection of the edge 
and.the shock surface and thus are necessarily functions of time. In general, 
the edge coordinates must be determined in the course of solving for the 
evolution of the shock. 

5.3    Change of variable 

The coordinate transformation implied by the definitions of the previous 
section change the representation of the governing equations that we have to 
solve. A change of variable is required to transform the equations into the 
n, f, t coordinates. In what follows, when a derivative is for fixed laboratory 
position, we will used the notation \g, and for fixed position in the shock 
attached coordinates, we will use |^-. In particular we must show how 

ex, er goes to  i, n, (88) 
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9   d               d    d                                  /onx 
" dx-'Tzgoesto ^Tc                      m 

and 

£   goes to  £                                             (90) 
OT|2                  OT|C 

For example we need to compute the V operator, which in the lab-fixed 
coordinates is written as 

'     VEei + 4                                     (91> ox        az 
By the chain rule we have 

d _di d     dn d 

dx     dxd£     dxdn 
± = ?Ld_ + dn± 
dz     dzdi     dzdn                                    v   ' 

and we compute the derivatives £,*,£,*,"*,«,*, from the coordinate transfor- 
mation. 

If we differentiate the coordinate transformation (in 2D) 

xex + ztz = £,(£, t) + nh(t, t),                                (93) 

with respect to x and z respectively, and use the definition of t and the Frenet 
formulas (83), we obtain the following formulas 

~d£     dn A          d£ t                                 rn.. ex = t-£- + —h + n/c-rH                                  (94) 
ox     ox           ox 

- tz = t-± + —h + nn^t.                                  (95) 
oz     oz           az 

If we take the dot product of the above formulas with n and i respectively, 
• we get the following relations for the direction cosines between the lab-fixed 

coordinates and the intrinsic coordinates 
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e,.n=-,  es.t = (l+nK)-, 

ez-n=—,  ez-t = (1 + n/c)—. (96) 

The lab-fixed unit vectors, ex, tz can be written in terms of their components 
in the intrinsic frame as 

e* = (ex • n)n + (ex • £)£, 

e2 = (e, • n)n + (e, • i)i. (97) 

The V operator can then be written as 

[(«■•*)*+<«••#! (i|+!£)•       w 
If we multiply out the above result and use the properties of the unit vectors 
thai; |f| = \h\ = 1, i • h = 0, or 

©'-(I)'-' • (a,+(i)'-- 
dnd£   +   ön^ = 0) (99) 
3x öi dz dz 

and use the fact that di/dn = 0, then the following formula results 

V = £-J—^ + n|-. (100) 
1 + riK o£       on 

As another example, by using the definition of the velocity in the intrinsic 
coordinates 

ü = u^i + u„n, (101) 
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we calculate the divergence V • ü, as 

V-u = 
1     duj     dun un 

I + nn d£      dn        1 + un 
— KU(. (102) 

The time derivative in the lab-fixed coordinates is related to that in the 
shock-attached coordinates by the formula 

(103) 

where dn/dt\g = — Dn can be identified as the negative of the normal com- 
ponent of the shock surface velocity and, d£/dt\s = B is the instantaneous 
rate of increase or decrease of arclength along the shock. Thus we write 

d.        8.       n   d      Dd 
dil*=dil?-Dnfa + Bd-f 

(104) 

5.4    The governing equations in intrinsic coordinates 

The governing equations in intrinsic coordinates follow from a straightforward 
application of the formulas of the previous section. We summarize them 
below: The equation of conservation of mass is given by 

2£|(.+AWu„_D„))+/tJ^+     ' ff 
dt ^    on \+nK    1 + n«    at, 

The n-momentum equations is given by 

a<«) -W+B| = 0.(105) 

AC dun dun        ut    dun      2    .. 
dt an      1 + nn a(       * 1 + nn 

ß—- - BU^K 
dn 

The ^-momentum equation is given by 

(106) 

-zr + (un- Dn)   * 
dt 

dUi        u{    duz K 

on      1 + n/c dt, 1 + nn 

due 
+B-z?- + BunK + 1     dp 

\ + nnd£ = 0. (107) 
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The energy equation is given by 

de     , „ .de        ut    de     _9e 
— + un - Dn— + 7—^—^7 + B-77Z 
at an     1 + nnd^        at, 

P_ 
»2 P 

The rate equation is given by 

at an     1 +n/ca£        o£ 
= 0. (108) 

— + un - Dn — + —*— — + ß— = r. 109 
at an     1 + n/c o£        a£ 

5.5    Additional kinematics of the surface 

In the equations of the last section the quantity 

B-|i* <110) 

appears and represents the instantaneous change in the arclength along the 
shock. Here we give the derivation to show how this term is described com- 
pletely in terms of quantities defined in the surface. By doing so, we derive 
the Jcinematic surface relations. 

Differentiating the change of variable formula 

xi = xa(U)+nh(Z,t\, (HI) 

with respect to t, holding xt fixed (and using the chain rule and Frenet 
formulas) obtains, 

-t ,      .dt,      dn, . fdn, ,d(, I ,,,„. 

We specialize this result to the surface x = x3, set n = 0, and use the 
definition dxs/d( = i and dn/dt\s = -Dn to obtain 

fl<-+<fl,-D.ft = 0. (113) 
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Next we differentiate (113) with respect to £, holding t fixed, and use the 
Frenet formulas to obtain the following vector equation that describes the 
kinematics in the shock surface 

m^TMtk)t~Ke^n--örn-DnKt = 0-      (U4) 

We dot the last equation with n to obtain the n- component and obtain 

A   di        d£        dDn     n ni-v n-^|<-/c#---är=0' (115) 

and dot the same equation by t to obtain the £ - component as 

|(|l,)-^ = 0. (116) 

This pair of surface relations can be used to describe the shock surface 
evolution solely in terms of angle - arclength coordinates as follows. From 
the formulas that define the normal and tangent vector in terms of the shock 
normal reference angle <j>, (82), and the definition of the plane curvature, 
(84), we find that 

&--*&• <m> 

By integrating equation (116) with respect to £, and using the definition 
K = d<t>/d(, we get the explicit expression for the instantaneous rate of change 
of the arc length, 

where f(t) is an integration constant. Finally from the Dn — K relation, we 
have the fact that Dn(/c) is presumed to be a known function. Substituting 
these results back into (116) yields the intrinsic, integro-differential equation, 

for <K£,.*)- 

34,       d+     dDn{K)P4> (m) 

dt        di <LK    d?' K     } 

This equation was derived first in [16] by a different route. 

35 



Importantly, the results of this section can be used to make explicit es- 
timates of the asymptotic orders of certain dynamic terms that occur in the 
governing equations. We explore this in the next section. 

6    Asymptotic Scaling 

Recall the basic results that we had previously obtained by discussing Carte- 
sian coordinates where the shock locus was given by 

xß = z - Dcjt - za{x,t) = 0. (120) 

The normal detonation velocity was given by 

DCJ + dzjdt ,     , 
"B"[l + (d*./d*)»]»/a' K      ' 

and the plane curvature was given by 

_ O za 1  (122^ 
K~ dx*[\ + {dza/dx)*]w K   ' 

Also recall that the steady ZND, 1/2-reaction zone length was given by the 
integral 

Jx=o     r(p„(A,/9„(A),A) 

where the * subscript refers to quantities denned by the steady state. 
In what follows, within this section, we adopt the notation convention 

where a quantity with a () refers to a dimensional quantity and the quantities 
without a tilde are dimensionless quantities that are scaled with respect to 
the dimensional unit. In particular we choose the following scales for length, 
velocity and time 

length     —     iTZ, 

velocity     -     DCJ, 

time     -     iTZ/Dcj. (124) 
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Then the formulas (in Cartesian coordinates) for the normal detonation ve- 
locity and the curvature become 

n - A. _     l + dz>ldt Ü2M n~ DCj~[l + (dz,/dxW [   0) 

and 

d2z,/d, x 2 

K-k£rz-[i + (dzs/dxy}w (126) 

Recall the limit of small shock slope, can be expressed as 

The reaction zone thickness is now the basic, 0(1), unit of distance measure- 
ment in our theory. The natural way to express slow variations along the 
shock, measured in a direction transverse to the shock, is to introduce the 
slowly varying length scale 

X = ex. (128) 

Transverse variations are measured on the X ~ 0(1) length scale so that 
when d/dX ~ 0(1) then d/dx = ed/dX ~ 0(e). 
It follows that the shock slope scales as 

if - # <129) 
The argument that we had used in section 3.5, suggests that if temporal 

changes in the movement of the detonation shock are to affect the detonation 
velocity at the same order as the shape changes, then the relevant time scale 
must be such that 

|^~0(62),  since   ^2~0(e2). (130) 

Thus we introduce the slow time variations and introduce the time scale 

r = e2*, (131) 
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so that 

d 2 (132) 
dt        dr 

6.1    The expansion procedure 

What follows next is a discussion of the expansion procedure that is used to 
derive a reduced set of equations that will describe the quasi-steady, weakly 
curved dynamics of near-CJ detonation shocks. The smallness of the shock 
curvature is measured relative to the to the reaction zone thickness in the 
normal direction. 

There are two main developments that must be in place before we can 
start this reduction, and they have been covered in the previous sections: i) 
The governing equations need to be written in a shock-attached frame, ii) 
Scaling assumptions that describe the nature of the unsteadiness and their 
relation to the shape changes of the shock must be adopted. The scaling as- 
sumptions are those associated with a particular asymptotic distinguished 
limit of the reactive, multidimensional Euler equations. The multi-scale 
asymptotic expansions that are described next (although perhaps robust in 
their ability to model the underlying physical system) are mathematically 
restricted to describe the shock dynamics within the limits of the scaling 
assumptions and following expansions. 

The expansions that we list here are motivated by the dynamics implicit 
in the shock relations and the fact that to leading order, we expect the 
detonation to behave in a quasi-steady fashion. We reintroduce dimensional 
equations here, and temporarily retain c as the small parameter that describes 
the small relative curvature. The variable n still measures distance in the 
shock normal direction and is negative within the reaction zone and zero at 
the shock. We retain T as the relevant time scale, and use C as the slow 
transverse spatial scale that measures arclength along the shock, defined by 

C = e£. (133) 

The expansions of the dependent variables for the simplest version of 
DSD-theory are 

U£   =   euf'(n) + o(e), 
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Un = u(°)(n) + e2ui2)(n,C,T) + o(e2), 

p = p(°)(n) + eV2)(n,C,r) + o(62), 

p = p(°)(n) + 6V2)(n,C,r) + o(C
2), 

A = AW(n,r) + c2A(°)(n,C,T) + o(c2). (134) 

In addition to the dependent variable, we also expand the normal detonation 
velocity (in the simplest version of the theory) in terms of the shock curvature 
as 

Dn = l + e2Di2>(C,T) + ..., (135) 

where K is related to e by 

/c = e2/c<2>. (136) 

Note by assuming the expansions (135) and (136) we have assumed that 
the leading order correction to the normal detonation velocity is 0(K). This 
assumption is verified if the analysis determines the coefficient D^\ and is 
correct for the simplest case presented here. However in general the leading 
order correction to Dn can have a different dependence on K. For example, 
in [5] and [8] it is shown that the leading correction to Dn is 0(K In /c) for a 
rate of the form r = k(p,p)(\ - A). 

The 0(1) terms in the expansions for un,p,p and A, reflect the steady, 
ID, ZND, solution in the shock-attached coordinates. The full expansions 
for the dependent variables, the curvature and the detonation velocity are 
substituted into the governing equations (105) - (109). This leads to, in 
the standard way, a hierarchy of systems of equations at 0(1), 0(e), and 
0(e2). Each set of equations must then be solved in a consistent manner 
to ultimately produce a uniform approximation within the space and time 
domain of interest. 

While this procedure is general and precise, we replace it with a sim- 
ple and entirely equivalent procedure, whereby we analyze each term in the 
governing equations, using estimates in terms of e that are found in the ex- 
pansions (136) and from the scaling definitions. We then discard terms that 
are smaller than 0(e2), i.e. below the order of the curvature. This analysis 
was carried out systematically in [8], however Whitham's shock ray coordi- 
nates are used rather than the Bertrand coordinates that appear in these 
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notes. What follows is a discussion that analysis and we go through the gov- 
erning equations, essentially term by term. We discuss the negligible terms 
in detail. 

Starting with the unsteady term in (105), we get the estimate 

%k=0^)- (137) 
This estimate follows from two facts, that the leading order approximation 
p(°) is assumed not to depend on r and that the next correction to p is 0(e2). 

The term 

1      d:(put) = o(e2), (138) 
1 + UK d£ 

because we have slow transverse variations and u^ is assumed to be 0(e) and 
not to depend explicitly on £. The term 

Ku< = 0(e3). (139) 

The term in the mass conservation equation is 

ß|| = 0(e4), (140) 

and to show this, we need to invoke an estimate of B = d(,/dt\s. 
Recall from (116) that B must satisfy the kinematic surface relation 

|f = £U, (141) 

so that in order to be consistent, 

B=ft\*~0(e). (142) 

A list of other negligible terms and their estimates obtained by similar 
arguments is found below. In the n-momentum equation we find 

— -= 0 e4 , —* -TT = 0(e ), 
at  *• 1 + Tin o£ 

UiK ^w   4\      rßUn = 0(e4), B-^ = 0(e4), BU^K = 0(e4). (143) 
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The estimates of negligible terms in the £- momentum equation are 

Ä=± = 0(e3), B^i- = 0(f>), Bu„* = 0(€3). (144) 
1 + n/c a£ 

In the rate equation we neglect 

^=°(£4'T^|=°^BI=0(£,)-    (145) 

From the ^-momentum equation we find the following, simple result. 
From the 0(e) equation we find that u^ ' obeys 

dn 
Integrating this equation shows, 

= 0. (146) 

u^/K.r). (147) 

But since the normal shock relations show that there is no jump in u^ across 
the «shock, combined with the assumption that the upstream state is quies- 
cent, shows that 

4^ = 0,    for all C and r. (148) 

Consequently we find that 

uz = o(e), (149) 

and some of the estimates of this section that involve u^ can be further* 
refined. 

7    The Reduced Problem for Dn — K, 

If we retain only the terms in (105) - (109) that may contribute terms up to 
order 0(e2) ~ K, we find the reduced set 
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•3 

—(p(un - Dn)) + punK = 0, (150) 

><--D">ff+fH- (151> 
I-Ä-* (152) 

K - Dn)^ = r. (153) 

In addition to these equation we add the (strong) shock relations at the 
location n = 0, which we reproduce here for convenience 

7 + 1 2 2 

Un = un-Dn = -Dnl^-,       u< = 0, A, = 0. (154) 
7+1 

The shock relations essentially serve as boundary conditions for fixed Dn. 
As part of the general formulation, a total integral of the energy can be 

obtained from combinations of the above differential equations. This relation 
is essentially Bernoulli's equation for the total energy on a streamtube, where 
the value of the total energy integral is evaluated at the shock. The strong 
shock result is given by 

/        \\ , P i ("n - Dn)2      Dl .     . e(p,/>,A) + - + = —. (155) 
pi l 

7.1    Derivation of the master equation 

In this section, we give a derivation of the master equation for the general 
e(p, v, A) equation of state, and then take the special case of the polytropic 
equation of state. We start with an arbitrary EOS to obtain 

de dp     9eöp     öeöA      P_dp_ _ n /,cc\ 
dp dn     dp dn     d\ dn     p2 dn 
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Which we rewrite as 

[p/p2 - del dp] dp     dp     de/dX ÖX ^ 
del dp       dn     dn     dejdpdn       * •    ' 

We note the general definition of the frozen sound speed as 

c2 s \plp2-deldp]^ ^ 
de/dp 

so that the previous result can also be written as 

The next step is to eliminate the pressure p and the density p in favor 
of the relative velocity Un = un - Dn and the mass fraction A. From the 
momentum equation we find that 

and from the mass conservation equation we find that 

dp Un + Dn      P dUn .    u 
— =-pK TT     a     • llDlj 
dn Un Un dn 

These two substitutions are then used in the energy equation and results in 
an equation that is quasi-linear in Un and A. If we use A as independent 
variable instead of n, the rate equation provides the replacement 

A = I_A. (162) 
dn     UndX 

By replacing the derivative d/dn in the quasi-linear form of the energy 
equation by 9/9A and replacing dX/dn by r/Un and then solving for dUn/dX, 
we obtain an equation that determines Un as a function of A 

ÖA  "      n r[c2-(/n
2] 

(163) 
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7.2    The special case of the ideal EOS 

Now we turn to an example of the ideal equation of state. This choice has - 

the advantage that much of the theory has a simpler form, and that there is 
a large body of established theory and numerics. The ideal (or polytropic) 
EOS is given by 

e = £—!—-QA.                                       (164) 
P7-1 

Then some of the thermodynamic quantities in the expressions of the previous 
section are 

;S=-^-').                (») 
c2 = 7£.                                             (166) 

P 

By using the total energy equation we can get an expression for c2 that only 
depends on Un and A as 

c2 = Ifi(^-^) + g(7-l)A.                        (167) 

The master equation can then be written in the form 

ÖX         ri] 

where 

$ = (7-l)Qr-c2(£/n + £>n)K,                          (169) 

and 

V = c2-Ul                                         (170) . 

A rate law with simple depletion that has a premultiplying rate constant that 
is sound speed (temperature) dependent is generally of the form -* 

r = k{c2){\ - \y.                                          (171) 
, 
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7.3    The shooting problem for the Dn — K relation. 

Here we discuss the shooting problem that determines the Dn - K relation. 
Note that the sign convention we have used assumes that when the detonation 
shock is convex, relative to the ambient flow, that the curvature is positive. 
This is the case of a diverging detonation. 

The master equation (163) was derived for an arbitrary EOS of the form 
e(p,/>, A), and has the general form 

«t-M,   ■ (172) 
d\        rn 

where 

$ = _l_öe/|A_c2 (173) 

pdel dp 

and n is defined by (170). The solution to the master equation can be entirely 
described in a Un - A plane if the right hand side of (172) can be written 
entirely as a function of at most Un and A. If this is not the case, and for 
example, the density dependence cannot be eliminated explicitly from (172), 
then the continuity equation must be added for a complete description. 

For the shooting problem, for general EOS, one must also solve the shock 
relations to obtain a boundary condition of the form 

Un = Un(Dn) at A = 0. (174) 

The integral curve must start at the shock, with A = 0 and for positive 
curvature pass through a singular point that corresponds to a condition where 
the flow becomes sonic (i.e. n = 0). So that we have a nonsingular solution at 
the sonic point, the integral curve must be such that $ and rj simultaneously 
vanishes there. The condition that the Un - A integral curve pass through 
the point in the £/„ — A plane defined by the conditions 

$ = 0 and ;/ = 0, (175) 

is called the generalized CJ condition after Wood and Kirkwood, [3], and 
must be applied in addition to the shock boundary condition. The task of 
solving for an integral curve in the £/„ - A plane is overdetermined unless one 
allows for a relation between Dn and K. 
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The master equation (163) subject to the shock boundary condition (174) 
and the generalized CJ condition, is a self-contained problem, providing that 
it is possible to write the thermodynamic quantities, c2, (de/d\)/(pde/dp) 
and the rate law r, solely in terms of Un and A. This cannot be always be 
done for a non-ideal equation of state or rate law. Rather it is true only 
under some special circumstances, like the example shown in section 7.2 for 
the ideal equation of state, and a rate law which had a rate premultiplier 
that is only function of c2. 

Once the integral curve (/„(A) is found, one can recover the density and 
the pressure from the integration of 

rdW«K-piUn + Dn)K, (176) 

and 

&=-"-!r- (177> 
subject to the appropriate shock conditions.   The spatial structure of the 
reaction zone is then finally determined by 

Und\. '  (178) 
Jo    r 

7.4    The shooting problem for general EOS 

The general formulation of the shooting problem requires the the simulta- 
neous integration of either the mass or momentum equations, in addition to 
the master equation to describe the solution through the reaction zone. The 
general formulation (for one reaction variable) can be written in terms of two 
coupled nonautonomous equations for either {p,P), (p,Un)or (Un,P)- The 
missing dependent variable is supplied through the total energy integral, 

e(p,/>,A) + £ + ^ = e(Ps,ps,0) + ^ + ^. (179) 
pi ^ Pa 

The relevant equations for p, Un and p, with A as the independent variable 
are 
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d\        r 
(Un + Dn)K + - (180) 

A numerical procedure is a robust way to determine the determine the 
•solution and the Dn — K relation. A successful iterative procedure starts 
the integration of the ODEs at the shock, and integrates toward the end of 
the reaction zone. For a fixed D„,/c pair, one of the two of the generalized 
CJ conditions will be satisfied first, while the other is not. One uses the 
residual, i.e. the nonzero value of the condition, to develop an iteration • 
procedure (like a Newton-Raphson or secant method) to change Dn (say) 
systematically. The integration is repeated until the shock conditions and 
the generalized CJ conditions are satisfied simultaneously. Lee, Persson and 
Bdzil used this procedure recently to determine both the Dn — n relation and 
the rate law for nonideal, ammonium nitrate-based explosive used in mining 
applications, [13]. 

8    The Singular Perturbation Solution to the 
Dn — K, Relation for Ideal EOS 

More extensive discussions of the analysis presented here are found in [5], 
and in particular [8]. 

We reintroduce the dimensional scales so that the resulting problem that 
we finally analyze is dimensionless. The following quantities and parameters 
are defined for the ideal equation of state described in section 7.2, 

Un = ÜJDcj,        C = C/DCJ, r = fiTZ/DCj 

Dn = Dn/DCJ,       K = «/„, q = Q/D2
CJ. (183) 

Having done this we obtain the dimensionless version of the master equa- 
tion for an ideal equation of state and idealized rate law as 
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w;      [to-Dr-Xv. + DM (184) 
a\ r{<? - Ul) 

where c2 in terms of (/„ and A is given by 

2 
with the shock condition 

c2 _ 1     1/n2      rr2 (j£-ü2) + ,A(7-l), (185) 

Un = -2-|ön. (186) 
7 + 1 

To illustrate the theory we will treat the simplest case where A; in (171) is a 
constant and is not state-dependent. 

The objective here is to describe the asymptotic solution to this problem 
in the limit as K —> 0. The solution is an integral curve in the Un — \- plane 
that starts from the shock and ends up at the generalized CJ point. 

8.1    Location of the critical point in the Un - A - plane 

The location of the generalized CJ-point is given by the conditions 

$ = 0,  and 7? = 0. (187) 

These conditions respectively are 

(7 - l)qk(l - A)" = c2{Un + D)K, (188) 

and 

c2 = Ul (189) 

In particular, in equation (188), as K -*■ 0, we must have A —»■ 1, so that 
we can make the assumptions near the generalized CJ point, 

Dn = l + D'n + ...,  A=l-A' + .... (190) 

Substitution of those expansion into the previous expression gives approxi- 
mate expressions 
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^(Af«1". (191) 
and 

We obtain two algebraic conditions from this analysis near the singular point. 
Notice that the order of Dn is not determined by this analysis. 

8.2    Near-shock expansion 

The analysis of the structure of the solution to this problem breaks into two 
pieces, in the spirit of layer analysis of singular perturbation theory. There 
is generally a near-shock layer and a layer near the generalized CJ point. In 
these notes we will treat the simplest case possible, when the relationship 
between Dn and K is linear. 

We suppose that the near-shock layer has a regular perturbation expan- 
sion in terms of K of the form 

[/n = (/<°>(A) + /ct/<1>(A) + ..., (193) 

and represent Dn by 

Dn = l + KD^ + .... (194) 

The object of the analysis is to find a formula for D£\ Substitution of the 
above expansions into (184) and (186) and collecting powers of K gives the 
problems for U^°\U^. At 0(1) we obtain 

((c(0))2 _ ((/(°>)2)^ = £/<°>(7 - 1),, (195) 

subject to the shock boundary condition 

(/(o) = _l£Li at A = 0, (196) 
7 + 1 

where (c(0))2 is determined in terms of (7(0) and A from (185). 
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At 0(K) we have 

((c2)^ - (uT^ + ((c(°))2 - (tf(0))2)^ = 
t/(Dg(7_i)   _   (/(0)(c(0))2(C/(°) + l)/rW, (197) 

(where r<°> = fc(l - A)"), and tfW is subject to 

tfW = -—£>i1} at A = 0. (198) 
7 + 1 

Note that (c2)W is also determined from (185) in terms of U(1),UW and A, 
and (U2)^ = 2U^UM. For convenience we introduce the variable 

^ = VT-A. (199) 

Both of the problems listed above can be solved explicitly. 
The 0(1) problem is exactly the same as the ID, steady, CJ, ZND deto- 

nation wave, see section 4.3.1. The 0(1) problem requires the solution of a 
separable first order ODE and the solution is given, by 

(/(o) = _lzl. (200) 
7+ 1 

The solution to the O(K) equation for U^ is 

^-^HVMi-M'«**   (201) 

where F(£) is defined by 

= 27* (i+ir*-»m 
K)      (7 +I)2 * 

At this point the leading order correction to the Dn — K relation can be 
derived by using the principal of elimination of the strongest singularity. In 
this case, a singularity exists in the 0(/c) expansion and must be removed to 
obtain a regular solution near the end of the reaction zone. 

Note that in the near-shock expansion that the solution for C/W becomes 
singular at the tail of the reaction zone as A —>• 1, i.e. as £ —► 0, U^\ without 
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further assumption would become asymptotic to 0(l/£). Thus sufficiently 
close to the end of the reaction zone the expansion becomes nonuniform. 
The simplest argument that can be made is that this nonuniformity is not 
a characteristic of the physical solution and it is not present in the physical 
flow. We can eliminate the nonuniformity by choosing D^ according to the 
formula 

■Djj> = - f1 F(£)d£. (203) 
Jo 

With this choice the solution for U^ becomes 

+ .%Vi)ff(^    (204) 

and this solution is not singular as £ —► 0 since $ F(£)d£ ~ £. 
Notice also that the integral that defines £>{*) depends on the form of the 

rate law and the equation of state. For this choice of the rate law made here, 
the integral is convergent only for values of 0 < v < 1. For v = 1, the integral 
is formally divergent, which indicates that the leading order correction to Dn 

is not O(K), but is larger. (It turns out that for v = 1 the leading order 
correction is 0(KITI(K)), [5], [8].) 

8.3    The transonic layer 

Here we give the results in the transonic layer, near the end of the reac- 
tion zone. Note that we make an expansion where the values of U and A 
are assumed to be close to the values determined from the generalized CJ 
conditions. Recall that the values of their were determined to leading order 
according to 

1 - A = (z.)1'"*17*,  where z. =      27 

(7 + l)2fc 
7      ,7-1, and Un = -L- + 2—-[D'n - 29(z.)1/V/"], (205) 

•7 + 1 7 
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where Dn is the general form perturbation of the detonation velocity, with 
out its order specified. 

What form does the expansion of U take in this layer? The question can 
be answered by looking at the leading order of the outer solution (the near- 
shock solution) and evaluating it at the generalized CJ point. Note that if 
we do that formally, we get 

(/(°> = 7     +(*.*)1/* (206) 
7+1        7+1 

This simple result strongly suggests the form on the TSL expansion must 
take. We introduce the new layer coordinate 

{Z.K)
1/U

S = (1 - A). 

Notice that the term K
1
/" appears explicitly. 

We write the expansion in the TSL as 

(207) 

JJTSL 7 

7 + 1 
+ (zmK)1'2"uW2,'Xs) + ...   . (208) 

The governing equation for u*1/2") derived from the master equation is 

d(u(W)2 

(7 + l)2V      a"]' ds (7 + l)2 

subject to the boundary condition 

u^/2u) = 0 at s = 0. 

The solution to the above problem is 

(209) 

u (1/2") _ 1 

7+1 

The TSL solution is given by 

,\-v 
1- 

l-i/ 

1/2 

(210) 

(211) 

u: TSL 7 
7+1 + (*-) l/2i/_ 1 

7 + 1 

.1-" 
5-1- 

-1 1/2 
.1/21/ 

1-1/ 
(212) 
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8.4    Summary 

In summary, we have solved for the solution through the reaction zone and 
obtained the leading order corrections that are 0(K) and have found that 
the solution is split into two regions, a near-shock layer (called the main 
reaction layer MRL) and a near-sonic region, near complete reaction (the 
transonic layer TSL). Importantly, in order for the solutions to match, and 
so that we obtain a uniformly valid description, we must have an eigenvalue 
relationship between the perturbation of the detonation velocity. When we 
carry out an expansion using the curvature as our perturbation parameter, 
this is equivalent to finding a specific value for the perturbation D^' = 
— JQ F{i)dl. If we make the simplest choice that the rate premultiplier k is a 
constant, then the integral, defined by the integrand F in (202) can be done 
analytically and obtains 

D" = 
1    27

2 

fc(7 + l)2 

1 + + 1 
(213) 

.2(1-1/)     3-2i/     2(2-i/) 

This last formula, combined with (194), is the Dn — K relation for the model 
explosive. 

We now give a final set of (dimensional) formulas that summarize the 
basic result. For an explosive material modeled by a polytropic equation of 
state,. 

e = 1   2-OA, 
1-\p 

(214) 

and a rate late of the form 

r = k(l-\y for 0<i/< 1, (215) 

the (dimensional) Dn — K relation is given to 0(/c) by the formula 

Dn = DCJ - 
n2 U

CJ 272 1 + 2 + 1 
K. (216) 

k   (7 + I)2 [2(1 — i^)  " 3-2i/ ' 2(2-i/). 

This representative result for the Dn — K relation and the description of the 
reaction zone structure, that accompanies it, has become the basis for the 
engineering Method of Detonation Shock Dynamics, that will be described 
in a sequel to these lectures. 
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